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Influence of shape on ordering of granular systems in two dimensions

I. C. Rankenburg and R. J. Zieve
Physics Department, University of California, Davis, California 95616

~Received 1 February 2001; published 17 May 2001!

We investigate ordering properties of two-dimensional granular materials using several shapes created by
welding ball bearings together. Ordered domains form much more easily in two than in three dimensions, even
when configurations lack long-range order. The onset of ordered domains occurs near a packing density of 0.8,
a phenomenon observed previously for disks. One of our shapes, the trapezoid, has packings that remain
disordered and near the transition density even after annealing by shaking. Although random packings are
unstable for disks and many other shapes in two dimensions, trapezoid packings provide an approach to
studying two-dimensional randomness. We also find that the rotational symmetry of a shape is an excellent
predictor of how easily it orders, and a potential guide to identifying two-dimensional shapes that remain
random after annealing.

DOI: 10.1103/PhysRevE.63.061303 PACS number~s!: 45.70.Cc, 81.05.Rm
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I. INTRODUCTION

Granular materials are studied in material science, g
ogy, physics, and engineering. Their unusual dynamical
havior has attracted much recent attention, but even t
most basic static properties are not yet understood@1,2#. For
example, a collection of uniform spheres in three dimensi
reaches a final arrangement known as random close pac
~RCP!. The RCP density is 0.64, substantially smaller th
the 0.74 density of the fcc and hcp lattices. The RCP den
is robust to changes in the vibration method, or to us
uniaxial or hydrostatic pressure to push the grains toge
@3#. Computer simulations also agree well with physical e
periments@4#. The structure of RCP arrangements is th
oughly documented by experiments and simulations, but
ther the arrangements nor their density is understood f
fundamental principles. The only algorithms for generat
an RCP configuration involve a simulated shaking pro
dure. Even attempts to derive the RCP density begin fr
experimentally measured correlation functions@5#.

As a further complication, direct applications of packin
densities often deal with non-spherical particles, or mixtu
of shapes or sizes. In mixing dyes, the highest possible
centage of colorant depends on the RCP density for the m
ecule’s shape@6#. In making ceramics, particles form cluste
whose shape affects the final density@7#. Particle shape in-
fluences packing densities in complicated ways. The id
maximum packing density, as well as the RCP density,
pends on shape and is unknown in most cases. Furtherm
the density observed in a given experiment also depend
how easily particles move past each other into optimal p
tions. Interparticle friction can be large when a shape has
sides, and multiple contacts can eliminate much of the p
ticles’ rotational freedom. Cubes, for example, have ma
mum packing density of 1 but reach a density of only 0.68
deposition@8#. On the other hand, irregularly shaped pa
ticles are less dense than spheres on initial deposition
compress particularly well with vibration@9#.

Theoretical work has concentrated on packings of h
spheres@4,5#, with generalizations to hard ellipsoids@10–13#
or mixtures of sphere sizes@14,15#. For ellipsoids, simula-
1063-651X/2001/63~6!/061303~9!/$20.00 63 0613
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tions find several phases as a function of particle dens
Theory has rarely dealt with other shapes, even ‘‘simpl
ones such as regular polygons and polyhedra. Without
derstanding the mechanisms by which such particles m
into position, the utility of simulations is unclear.

For many physics issues, solving an analogous problem
two dimensions can provide insight to the full thre
dimensional question. However, there is no stable rand
configuration of circles in two dimensions. Uniform spher
confined to a single layer easily form a triangular lattice, t
densest possible packing. Experiments and simulations
suggest a transition between random and ordered config
tions near a density of 0.80@16–18#. Density increases much
more slowly beyond this point. The number of touchin
disks in the configuration also changes sharply with den
near 0.80. However, without a better definition of a ‘‘ra
dom’’ arrangement, pinpointing the exact transition and a
lyzing two-dimensional random close-packed configuratio
is impossible.

Not only spheres, but even unusual shapes such as re
pentagons anneal to their densest known packing in two
mensions@19#. The arrangement for pentagons is a dou
lattice, in which translates of a two-pentagon unit cover
plane. Computer simulations find an analogous double lat
for heptagons as well@20#. Thus these shapes too are impra
tical for studying random close-packed structures.

Here we study several shapes in two dimensions. A m
goal is to find shapes that remain disordered, which wo
lend themselves to studies of random arrangements. In a
tion, we may better understand the dependence of orde
properties on shape. Finally, packing in two dimensions
important in its own right in the behavior of films and mon
layers.

All our shapes are clusters of spheres welded into tri
gular lattice positions. This guarantees that the densest p
ing is always a triangular lattice of the component spher
The point contacts between clusters minimize friction a
blocking effects as the shapes move past each other. Ano
advantage is that comparison with computer experiment
possible, since overlaps are easy to check with spheres
©2001 The American Physical Society03-1
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I. C. RANKENBURG AND R. J. ZIEVE PHYSICAL REVIEW E63 061303
sualizing the entire arrangement is also far easier in two
mensions than in three.

II. PROCEDURE

We welded together18 -inch diameter carbon steel ba
bearings with a Unitek 60 welder set at its maximum pow
60 W. During the welding the balls were held in a bakel
mount machined to give the desired final shape. The sha
made were doubles, triples~three balls in a straight line!,
triangles of three or six balls, diamonds of four balls, tra
ezoids of five balls, and hexagons of seven balls. The w
ing appears not to distort the balls. One of the most string
tests is that, as we shall see, several of the welded sh
order into perfect triangular lattices of their individual bal
A significant distortion from the welding would destroy th
long-range order. A schematic of our shaking apparatu
shown in Fig. 1. Two pieces of plexiglas separated by 0.1
inch spacers confine balls to a single layer. The containe
placed at an angle to the horizontal so that gravity pulls
balls towards one side. We typically fill a 9 inch34 inch
region with ball clusters. Roughly 2500 single balls fit in th
space. After putting the shapes in, we shake the box rou
to create a disordered initial state. An aluminum plate, c
nected to the plexiglas by a spring, serves as a ham
Rotating spokes pull back and release the aluminum pl
On release, it strikes the bottom of the container and sha
the balls. A hit occurs once every three seconds for one h
The balls stop moving completely between hits. The confi
ration changes substantially during the first few shakes,
negligibly at the end of the hour, but we have not inves
gated quantitatively the rate of ordering.

We vary both the maximum spring extension and
angle of the container. These parameters change the rel
strengths of three physical forces: the hit magnitude,
component of gravity pulling the balls together, and the fr
tion force between the balls and the plexiglas. Friction a
effective gravity depend only on the angle, with friction d
creasing as the angle becomes steeper and gravity increa
We use 18 different settings involving three spring exte
sions and seven angles between 20° and 50°.

The hit magnitude depends on both spring length a
angle, since the weight of the striking plate itself changes
equilibrium length of the spring by an angle-depend
amount. A very hard hit destroys the memory of the situ

FIG. 1. A schematic of the experiment. Moving the arm of t
sliding piece to one of the outlined sites changes the spring ten
at the moment of release and hence the hit magnitude.
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tion, and each time the balls settle from scratch. Furth
more, very strong hits can break the weld joints. On the ot
hand, a hit so light that the displacement of the balls is sm
compared to the ball diameter makes rearrangement diffi
and slow. In addition, for light hits at the smallest angl
shapes occasionally stop moving in positions that clea
should be unstable, held in place only by friction. Thus
might expect an optimum hit magnitude, not necessarily
same for different shapes. Using a range of parameters
us determine not only whether but also how easily differ
shapes order.

When the shaking finishes, we photograph the final c
figuration with an Olympus 340R digital camera and trans
the image to a computer. The computer scans the photog
for local bright spots, which appear near the center of e
ball. We refine the positions with a weighted average of
pixels surrounding the bright spots. Figure 2 shows the co
puter’s identification of an initial state and a well-order
final state. To locate the balls successfully by this method
single bright light source is used when taking the pho
graph. Multiple sources can lead to several bright spots o
single ball, or spots far from the ball center. A significa
systematic error comes from warping of the photograph
the camera lens itself. To eliminate the warping, we gene
a perfect triangular lattice of black dots on white paper a
photograph it. We then find the displacement from ideal l
tice sites of each photographed dot and interpolate to get
displacement at other points in the picture. Figure 3 sho
the resulting vector field of displacements. We adjust
position of each ball center in the photographs to compen
for the warping. The maximum correction is comparable
one ball diameter.

After each trial we sort the shapes and verify that le
than 7% of the shapes broke. The amount of breakage
relates strongly to both hit strength and shape. There is u
ally no breakage until midlevel hits and less than 3% on
but the hardest few settings. Shapes such as three-bal
angles, with each ball welded to two neighbors, are stro
Triples, with two balls held by a single weld, break mu
more easily. Breakage seems to have little effect on the

on

FIG. 2. The centers of the balls, as identified by the compu
from digital photographs of a trapezoid initial condition~top! and a
well-ordered arrangement of doubles~bottom!.
3-2
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INFLUENCE OF SHAPE ON ORDERING OF GRANULAR . . . PHYSICAL REVIEW E 63 061303
dering. For all shapes, the run with the most breakage
not the one with the best ordering. Even for triples, wh
broken shapes become singles and doubles, which both o
easily, high breakage did not correlate to good order. A f
settings for triples and six-ball triangles, and one for doub
were omitted because of large amounts of breakage.

III. RESULTS

As we vary the shaking parameters, all shapes exc
trapezoids and triples form domains comparable in size
the container itself, but they do so under increasingly rest
tive hit conditions. Figure 4, which shows final configur
tions for parameters away from optimum, reveals the s
stantial differences among shapes and illustrates many o
trends we find. The arrangements all come from a 40° an

FIG. 3. This vector field shows the displacements from t
positions due to the photographs. The entire region is roug
70330 ball diameters.
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and the middle of the three spring settings. Singles, doub
and hexagons can form essentially perfect lattices, with a
large domains oriented by the container walls. For triang
and diamonds, small domains always appear in addition
the large ones. Domain sizes for triples and trapezoids
always substantially smaller than the container size, sugg
ing an absence of long-range order. Usually the best orde
occurs at an intermediate hit power. Trapezoids are an
ception, with the degree of order nearly independent of
settings.

In all the arrangements of Fig. 4, the individual balls co
posing the shapes form ordered domains with sharp bou
aries. The configurations have progressively decreasing
main sizes. As the domains shrink, interstitial clusters a
regions that appear ‘‘random’’ increase in size and numb
Much of the configuration for trapezoids, the least orde
shape, has ordered regions no more than 6 balls~or two
trapezoids! across. This small domain size suggests that tr
ezoids approach a regime of stable random arrangeme
We stress that our notion of ‘‘order’’ involves only the a
rangement of the individual spheres. Identifying which ba
are welded together is difficult. We have done so for a f
cases and find no long-range orientational order beyond
requirement that the individual balls lie in a lattice. Thus w
are really studying the packing of disks in a plane subjec
certain constraints.

The shapes also differ in the voids that appear. Trip
give rise to fewer holes than do the nonlinear shapes. La
shapes support larger holes, sometimes with character
shapes. For example, hexagon packings regularly show
agonal holes, and the large~6-ball! triangles often have three
balls missing in a triangular pattern. Hexagons frequen

e
ly
f
t-

-
e
-

FIG. 4. Final configurations
for different shapes for an angle o
40° and intermediate spring se
ting. Left, top to bottom: singles,
doubles, hexagons, small tri
angles. Right, top to bottom: larg
triangles, diamonds, triples, trap
ezoids.
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TABLE I. Highest and lowest density for different shapes. The numbers in parentheses show wh
densities would be if the holes were filled in.

Highest Lowest Initial

Doubles 0.908 0.908 0.905 0.876 0.870 0.865 0.82
~0.912! ~0.911! ~0.909! ~0.881! ~0.875! ~0.873!

Hexagons 0.887 0.886 0.878 0.833 0.832 0.801 0.78
~0.895! ~0.894! ~0.891! ~0.861! ~0.850! ~0.829!

Small triangles 0.881 0.879 0.877 0.848 0.845 0.844 0.82
~0.892! ~0.889! ~0.887! ~0.861! ~0.855! ~0.853!

Large triangles 0.863 0.861 0.854 0.830 0.829 0.827 0.81
~0.883! ~0.880! ~0.872! ~0.842! ~0.839! ~0.837!

Diamonds 0.853 0.852 0.851 0.820 0.814 0.808 0.79
~0.880! ~0.870! ~0.869! ~0.832! ~0.822! ~0.814!

Triples 0.862 0.861 0.859 0.835 0.816 0.813 0.792
~0.874! ~0.873! ~0.870! ~0.841! ~0.823! ~0.816!

Trapezoids 0.839 0.836 0.832 0.812 0.809 0.808 0.78
~0.864! ~0.853! ~0.852! ~0.826! ~0.824! ~0.819!
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have rows of holes, as on the far left of Fig. 4, as well
substantial void regions at crystallite boundaries.

IV. LARGE-SCALE ORDER

We quantify the degree of order in several ways. Dens
shown in Table I, measures the state of the entire system
use a large rectangle and calculate the total ball area ins
contributed both by balls completely inside and by balls
the boundary. Our biggest source of error in the density
culation comes from the lengths of the rectangle’s sides
units of ball diameters.

The densities confirm the qualitative discussion on
relative ordering of the different shapes in Fig. 4. Of the t
main defects in our arrangements—holes and gr
boundaries—holes have a much larger effect on density,
ticularly for the largest shapes. Revised densities, trea
holes in an otherwise crystalline region as filled, are sho
in parentheses in Table I. Small triangles pack slightly be
than large triangles, although the difference decreases w
holes are counted as filled. The similar behavior of the t
sizes of triangles, particularly after discounting holes, sho
that the ordering behavior is not completely dominated
size-dependent effects such as the container size or
power.

The density of a perfect triangular lattice, and the ma
mum possible density for all of our shapes, is 0.9069.~That
the densest packings for doubles in Table I apparently
ceed this value is merely a consequence of the uncertain
the density calculation. There may be a systematic erro
less than 0.5% toward larger density, perhaps because
container height is slightly larger than the ball diameter a
the balls may not lie perfectly flat.! For packing of spheres in
two dimensions, a transition from random to ordered str
tures occurs near 0.80. In one experiment a gradual, unif
contraction of a rubber sheet increases the density of d
lying on the sheet@17#. After the disks come into contac
they slide across the sheet under further contraction.
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disk motion from sliding causes hexagonal crystals to fo
at a density of about 0.82. Another technique@16# shakes a
fixed-density system to find the most probable configu
tions. Repeating with a series of densities shows a chang
behavior near 0.75, with large lattice regions forming abo
this density. Computer simulations of a liquid-solid interfa
have put a hard-sphere liquid near a two-dimensional lat
of attractive sites and find a possible first-order transition d
to packing effects at a density 0.72@18#. The restriction to
lattice sites naturally reduces the transition density.

Interestingly, our lowest densities, found for trapezoid
are very close to the transition density, and qualitativ
there appear to be only small domains in these packings.
agreement of the trapezoid density with the previously
served hard-disk transition density supports the idea of us
final trapezoid arrangements as models of two-dimensio
RCP configurations. Although the exact configurations
tained by trapezoids would be unstable as arrangemen
unwelded single balls, the maximum random density sho
be similar for the two cases. The perfect alignment of
balls within each trapezoid increases the maximum rand
density, but the larger holes in trapezoid packings decre
the density.

The comparison with the less well-ordered configuratio
also illustrates how easily different shapes order. Even w
very light taps, doubles order reasonably well, for instan
Not surprisingly, the degree of order under light taps h
strong correlation to the size of the shapes used.

To identify a length scale for the domains in each arran
ment, we calculate a two-ball correlation function. We co
sider the distance between each pair of balls and constru
histogram of these distances, with about 320 bins per
diameter. This is equivalent to finding the number of b
centers in annuli of fixed width centered at a single ball. F
a perfect lattice, the result is sharp peaks at spacings cha
teristic of the triangular lattice: 1,A3,2, etc., diameters. Im-
perfections, both in the identification of the ball centers a
in the lattice itself, broaden the peaks and raise the heigh
3-4
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INFLUENCE OF SHAPE ON ORDERING OF GRANULAR . . . PHYSICAL REVIEW E 63 061303
the intervening values. Figure 5 shows the histograms co
sponding to the lattices of Fig. 2.

Geometrical considerations determine the average sh
of the histogram. The linear increase in average amplit
with distance at small separations corresponds to the incr
in the circumference of a circle with its diameter. The av
age amplitude in the histogram falls off at larger distan
because of the finite size of our sample. We calculate
exact distribution of separations for two balls randomly p
sitioned in a rectangle, as follows.

Let a and b be the lengths of the rectangle’s sides, w
a<b. The region of phase space corresponding to choo
two points at random in the rectangle has volume (ab)2.
Now calculate the volume of the subset with point separa
betweenr and r 1dr. With the rectangle oriented as in Fig
6, the first point lies below and to the left of the second po

FIG. 5. Pair correlation functions corresponding to the two-b
configurations of Fig. 2. The white lines are average values ca
lated from Eqs.~1!–~3!, as described in the text. The insets expa
the regions from zero to eight ball diameters.

FIG. 6. Geometry of the average histogram calculation
scribed in the text. If two points in the larger rectangle have
angle and separation shown, the lower left point always lies wit
the shaded region.
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one quarter of the time. Letu be the angle between the lin
connecting the points and the rectangle’s short side. Ifr<a
<b, the first ball can lie anywhere inside the shaded re
angle, of sidesa2r cosu andb2r sinu. Integrating overu,
the volume corresponding to separationr to r 1dr is

rdr E
0

p/2

du4~a2r cosu!~b2r sinu!

5@2pab24~a1b!r 12r 2#rdr . ~1!

For a<r<b, the same integral applies, except that not
angles are allowed. The result is

4rdr E
cos21a/r

p/2

du~a2r cosu!~b2r sinu!

5F2pab24ab cos21
a

r
22a2

24b~r 2Ar 22a2!G rdr . ~2!

Finally, for a<b<r<Aa21b2, there is an additional re
striction on the allowedu, giving

4rdr E
cos21a/r

sin21b/r
du~a2r cosu!~b2r sinu!

5F4abS sin21
b

r
2cos21

a

r D14aAr 22a2

14bAr 22a222~a21b21r 2!G rdr . ~3!

These formulas, divided by (ab)2, give the probability
that two points are separated by a distance betweenr and r
1dr. For a region containingN balls, the average value o
the pair correlation function is this function times the numb
of pairs, (2

N). The white lines of Fig. 5 are the average valu
calculated in this way.

The two parts of Fig. 5 differ most obviously in the exte
of the structure. In the upper graph, peaks give way to no
near 4 ball diameters, whereas the lower graph retains st
ture to 40 diameters. To measure the long-range correlati
we begin by taking the difference between the observed
togram and its calculated average value. We average th
highest values within a window 2 ball diameters wide, a
also the 50 lowest values. Then we take the difference
tween the two. As the window moves to larger distances,
difference generally decreases. It approaches 50 for the l
est distances, with extremely disordered lattices reaching
value within a few ball diameters. To assign a length scale
a configuration, we set a cutoff of 80. The best lattices d
below 80 near 30 ball diameters, which is comparable to
system size in one direction. Even primarily crystalline a
rangements often have two or three domains, aligned w
the different walls of the container, and the length scale

ll
u-
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e
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TABLE II. Extent of order, in ball diameters. The length scale of the most ordered arrangeme
limited by the sample size.

Most ordered Least ordered Initial

Doubles 30.2 27.7 27.0 14.3 13.0 10.2 3.0
Hexagons 28.0 25.5 25.1 7.8 7.6 7.5 3.3
Small triangles 25.3 22.1 20.4 8.1 8.0 7.7 2.7
Large triangles 20.6 14.5 13.8 7.9 6.8 6.8 2.7
Diamonds 13.6 13.1 11.7 4.6 4.6 3.7 3.0
Triples 12.2 10.2 8.1 4.5 3.0 2.0 2.0
Trapezoids 6.0 6.0 5.6 4.3 3.7 3.6 2.5
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find depends on the relative sizes of these domains.
length scales for several different configurations are sho
in Table II.

V. LOCAL ORDER

To further characterize the appearance of holes and g
boundaries in the different shapes, we analyze short-ra
order using methods sensitive to each type of imperfect
Domain boundaries strongly influence the short-distance
gion of the two-ball correlation function, while coordinatio
numbers are more sensitive to voids.

We use the correlation function out to 3 ball diamete
We add the heights of the first five peaks, and divide by
sum of the first and third valley heights. We omit the seco
and fourth valleys because they lie between closely spa
peaks and give less consistent results. This quotientD is
larger for better ordered configurations. For perfect order
balls lie in the valleys and the ratio is infinite. For the mo
disordered system we can engineer, the value is about
Using a ratio means that the exact number of balls used
each shape is unimportant.

Values for best, worst, and initial arrangements appea
Table III. This probe is very sensitive to grain boundari
The two most ordered runs of doubles have a single cry
spanning the entire container. The third run has two regi
with a grain boundary between them, which greatly redu
the peak-to-valley ratio. The best hexagon run has one la
domain and a small second domain, while the other r
have several small domains in addition to the large one
fact, as shown in Fig. 7, for systems with a single dom
boundary the peak-to-valley ratio is proportional to t
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length of the boundary. With more than two domains th
linear relationship fails, but the high sensitivity of the pea
to-valley ratio to boundaries remains.

Voids, interstitials, and other imperfections genera
have much less effect than boundaries. One exception is
in nearly perfect lattices, the first few valleys drop so close
zero that any disorder changes their relative levels subs
tially; this causes the wide variation in the numbers sho
for doubles. A second exception is that occasionally, parti
larly with doubles, a square lattice forms in a small ar
This produces a peak on the histogram atA2 diameters,
which is close to the center of the first valley and can hav
particularly large effect.

Doubles and hexagons show the best ordering, as the
by the long-range measures. Once again, the two size
triangles are very similar in both the best and worst or
displayed. One of the clearest indications of the sensitivity
this index to grain boundaries is the noticeable differen
between diamonds and triples. The two shapes have com
rable densities once voids are filled in, and have visua
similar amounts of ordering. However the triples definite
have more grain boundaries, with fewer interstitials, which
reflected here.

Properly normalizing for the order inherent in the diffe
ent shapes is a difficult problem. Resolving the effect
internal correlations among the balls composing a shap
particularly difficult with this measurement. The initial o
dering corresponds well to cluster size, suggesting that
internal correlations are important here. However, this co
lation disappears after shaking, even for the least effective
parameters. We emphasize the similarities between the
triangle shapes as evidence that this factor is unimportan
tion
TABLE III. D, a weighted ratio of the first few peak and valley amplitudes in the two-ball correla
function. See text.

Highest Lowest Initial

Doubles 1480 1451 642.6 78.7 76.2 64.2 16.0
Hexagons 410.8 216.8 191.0 54.2 42.3 33.6 26.7
Small triangles 109.2 105.3 104.7 43.1 42.9 40.8 20.5
Large triangles 91.8 88.6 82.4 44.2 38.9 35.0 25.3
Diamonds 71.0 68.7 61.8 26.5 23.9 20.3 18.6
Triples 57.6 50.5 44.4 23.6 17.9 16.2 14.1
Trapezoids 43.1 35.6 32.9 24.7 24.5 21.5 20.1
3-6
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the results from the final configurations.
As a complementary local order indicator, we calcula

the Voronoi region of each ball. The Voronoi region of a b
consists of the points closer to that ball than to any oth
The edges of the region are perpendicular bisectors of
lines connecting the ball to its neighbors, so for a perf
triangular lattice every Voronoi region would be a regu
hexagon. Pentagonal or heptagonal regions signify defec
the lattice. To measure order, we find the percentage of b
with six-sided Voronoi regions. This tells us how many ba
are in the interior of some domain.

The highest percentage of hexagonal Voronoi regi
ranges from over 98% for doubles to 78% for trapezoi
The highest, lowest, and initial percentages for each sh
appear in Table IV. These three numbers differ by at m
3.5% for a single shape, and usually by less than 1%.
comparison, the values for a typical initial configuration a
for the most disordered final arrangements are also sho
Doubles order the most easily. Hexagons achieve the
highest order, although at the poorest hit settings they rem
more disordered than triangles. Of the remaining sha
triples, and diamonds have six nearest neighbors with ab
the same frequency. Trapezoids have significantly more
regular Voronoi regions.

We next address the issue of correlations within the lar
shapes. The initial configurations given in Table IV show

FIG. 7. D, a ratio of correlation function values described in t
text, as a function of boundary length, for lattices perfect except
a single grain boundary. The line is a least-squares fit.
06130
e
l
r.
e
t

r
in
lls

s
.

pe
st
or

n.
xt
in
s,
ut
r-

r

trend of higher order for larger clusters. The differenc
among the final configurations also exceed correlation
fects. For example, each hexagon has a center ball with
nearest neighbors, and centers account for 14.3% of all b
For the three most ordered hexagon configurations, on a
age 94.5% of the balls have six nearest neighbors, so 5
do not. Since all the center balls do, 6.4% of the noncen
must have imperfect Voronoi regions, a change of less t
1%. The difference between hexagons and triangles is
eral times this large, so the perfect arrangement around
center balls cannot explain the entire difference. The m
complicated effects involve the outer balls. For a hexag
each of the six outer balls has three nearest neighbors
fectly positioned. A large triangle has three balls with fo
nearest neighbors, and three others with two. Without de
mining precisely the implications for the Voronoi region
shape, we posit that the effect should be much smaller t
that of the central ball of the hexagon, and that we can r
sonably ignore it in distinguishing among shapes. Also n
that the hexagons form a very poorly ordered initial sta
despite the automatically proper coordination number of
center balls.

The percentage of hexagonal Voronoi regions is parti
larly sensitive to holes. A single missing ball in a perfe
lattice creates six pentagonal Voronoi regions, with larg
holes disturbing more Voronoi regions. Slight lattice impe
fections, such as those introduced by the ball center iden
cation, usually reduce the number of nonhexagonal Voro
regions around a single void to four. Grain boundaries h
less effect, with typically one imperfect Voronoi region p
ball of boundary length. Interstitials have little effect beyo
the balls that compose them, since the balls at the surfac
a grain already have irregular Voronoi regions.

The coordination number, the number of balls touchin
given ball, is an indicator related but not identical to t
Voronoi region shape. No coordination number can exc
six, although a Voronoi region can have more than six sid
Coordination numbers are also far more sensitive th
Voronoi regions to small displacements of balls, for e
ample, from noise in identifying the ball centers. In Fig. 8 w
show the distribution of coordination numbers for the co
figurations of Fig. 4. For random sphere arrangements
three dimensions, the coordination number distribution v
ies more than other properties@3#, including the pair corre-
lation function. Balls are taken as touching when th

r

st and
TABLE IV. Percentages of balls with hexagonal Voronoi regions, for several shapes. The highe
lowest percentages among final packings, as well as the initial percentage, are shown.

Highest Lowest Initial

Doubles 98.7 98.2 97.6 88.2 87.1 86.8 74.4
Hexagons 96.2 94.1 93.3 80.8 80.5 73.3 70.8
Small triangles 89.9 89.5 88.6 82.1 82.0 82.0 73.1
Large triangles 88.0 87.8 87.6 83.3 83.1 80.6 78.4
Diamonds 87.3 85.3 83.8 73.9 73.0 71.3 69.0
Triples 86.2 85.7 85.7 77.8 72.8 71.3 67.3
Trapezoids 78.1 78.1 77.6 71.7 71.5 70.8 67.4
3-7
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computer-identified centers lie within 1.08 ball diamete
We choose this as a cutoff because at longer distances
nificant asymmetry appears in the first peak of the two-b
correlation function.

Earlier two-dimensional experiments found a sha
change in average coordination number near the rand
ordered transition@17#. Although our coordination number
are larger due to correlations introduced by the welds, t
decrease abruptly near the same density. The similar be
ior gives further encouragement to the possibility of study
random arrangements in two dimensions.

VI. ROTATIONAL SYMMETRY

We find that rotational symmetry is an excellent guide
predicting the degree of order that a shape supports. Figu
shows both the average of the three highest peak-to-va
ratiosD ~Table III! for each shape, and also the order of t
rotational axis. Except for doubles, the correspondenc
excellent. The various other measures of order would g
similar results. The correspondence between ability to or
and rotational symmetry suggests that domains grow aro
the edges. To join the ordered portion, a shape must have
correct orientation. Its rotational symmetry sets a limit on
maximum angle through which it needs to rotate to reach
orientation. On the other hand, the rotational symmetry
little correlation to the degree of order in the initial config
rations, which do not depend on growth at domain edge

Several features of the final packings make sense w
considering domain growth. For some shapes, any stable
sition near a growing crystal is part of the lattice. For e
ample, stability for doubles under gravity requires at le
three contacts, not all on the same ball. At the edge o

FIG. 8. Percentage of balls with a given coordination numb
for the configurations of Fig. 4.
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crystalline region, only lattice sites satisfy this criterion. B
contrast, triples do have a stable off-lattice location, as ill
trated in Fig. 10. Trapezoids and large triangles also h
stable nonlattice positions for a single particle added to
existing lattice, but our other shapes do not. This may
count for the significantly longer length scale of small t
angles compared to large ones. For diamonds, also illustr
in Fig. 10, clusters positioned incompatibly may lead
voids, explaining the large number of voids in diamonds~see
Table I!. Finally, doubles can generally join an ordered r
gion in any of three distinct orientations, allowing them
order easily despite their lack of much rotational symmet

VII. CONCLUSIONS AND FURTHER WORK

We have studied how several shapes composed of we
spheres pack in two dimensions. Our goals were to und
stand how particle shape affects packings, and especial
identify two-dimensional random close-packed configu
tions. Constructing shapes as sphere clusters avoids issu
maximum density and interparticle friction changing wi
shape, and permits detailed comparison of the configurat
reached by different shapes. One consequence is that we
a strong correlation between the rotational symmetry o
particle and its short-range order. In addition, the defects
long-range order relate to geometry. Shapes where at l
one side is 3 balls long produce more grain boundaries, w
voids are common with large nonlinear shapes.

In keeping with the tendency of shapes to order in t
dimensions, most of our clusters can anneal into configu
tions with long-range order of the individual spheres. Ev

r,

FIG. 9. A comparison of the average of the highest valuesD
~right! and the number of symmetries~left! for each shape. For
doublesD is actually actually 1191, far off the scale of this grap

FIG. 10. Possible lattice growth with triples~left! and diamonds
~right!.
3-8
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under conditions where no long-range order appears,
shapes form small domains with sharp boundaries, qua
tively different from the random configurations that appe
in three dimensions. Trapezoids are the one exception.
their packings remain random or nearly so, with typical d
main sizes of only two trapezoids. Interestingly, the onse
ordered domains occurs near the packing density 0.8, w
previous experiments on disks already showed evidence
transition between random and ordered states.

Finding shapes such as trapezoids with stable random
rangements in two dimensions allows comparison to
packing behavior of spheres in three dimensions. We pla
pursue the similarities further by studying the time dep
dence of trapezoid configurations during annealing. The d
on rotational symmetry suggest that examining elonga
shapes with little symmetry may identify other shapes that
not crystallize. However, because of difficulties with brea
age and with system size, this work is better done thro
computer simulations. The data presented here provide a
ries of test cases on the realism of any simulations.

Although our artificial particles are convenient for com
parisons among the shapes, the unusual surface geom
clearly changes some behavior from that of similar but c
vex shapes. The irregular surfaces allow neighboring p
ticles to lock together, leading to the high void densities
ro

.
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our larger shapes. More significantly, only the constitu
spheres form ordered structures,not the larger shapes. Fo
example, two-dimensional simulations of prolate ellipses
der the influence of gravity find orientational but not tran
lational long-range order@21#. By contrast, our doubles hav
no long-range orientational order. Instead, the dimples in
shapes’ sides allow neighboring doubles to interlock a
overcome the effect of gravity. A further project would d
form doubles gradually into ellipsoids by filling in th
dimples, while tracking changes in the characteristic arran
ments. Once again, this project is most practical throu
simulations.

We are continuing work along other lines as well. Tim
dependence measurements for shapes that do crystallize
help in understanding how nonspherical particles move i
position. Finally, we plan to extend the measurements
wards three dimensions by varying the container thicknes
accommodate more layers of balls.
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