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Influence of shape on ordering of granular systems in two dimensions
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We investigate ordering properties of two-dimensional granular materials using several shapes created by
welding ball bearings together. Ordered domains form much more easily in two than in three dimensions, even
when configurations lack long-range order. The onset of ordered domains occurs near a packing density of 0.8,
a phenomenon observed previously for disks. One of our shapes, the trapezoid, has packings that remain
disordered and near the transition density even after annealing by shaking. Although random packings are
unstable for disks and many other shapes in two dimensions, trapezoid packings provide an approach to
studying two-dimensional randomness. We also find that the rotational symmetry of a shape is an excellent
predictor of how easily it orders, and a potential guide to identifying two-dimensional shapes that remain
random after annealing.
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[. INTRODUCTION tions find several phases as a function of particle density.
Theory has rarely dealt with other shapes, even “simple”
Granular materials are studied in material science, geolenes such as regular polygons and polyhedra. Without un-
ogy, physics, and engineering. Their unusual dynamical bederstanding the mechanisms by which such particles move
havior has attracted much recent attention, but even theinto position, the utility of simulations is unclear.
most basic static properties are not yet unders{do?. For For many physics issues, solving an analogous problem in
example, a collection of uniform spheres in three dimensionswo dimensions can provide insight to the full three-
reaches a final arrangement known as random close packintimensional question. However, there is no stable random
(RCP. The RCP density is 0.64, substantially smaller thanconfiguration of circles in two dimensions. Uniform spheres
the 0.74 density of the fcc and hcp lattices. The RCP densitgonfined to a single layer easily form a triangular lattice, the
is robust to changes in the vibration method, or to usingjensest possible packing. Experiments and simulations do
uniaxial or hydrostatic pressure to push the grains togethefggest a transition between random and ordered configura-
[3]. Computer simulations also agree well with physical €X-tions near a density of 0.§06—18. Density increases much
periments[4]. The structure of RCP arrangements is thor',more slowly beyond this point. The number of touching

oughly documented by experim.ents ar!d sjmulations, but N€hisks in the configuration also changes sharply with density
ther the arrangements nor their density is understood frorﬂear 0.80. However. without a better definition of a “ran-

fundamental principles._The only a_lgorithms for generatingdom,, arrangement, pinpointing the exact transition and ana-
an RCP configuration involve a simulated shaking proces '

dure. Even attempts to derive the RCP density begin frorJ,P/zing two-dimensional random close-packed configurations

experimentally measured correlation functidg$ Is ilr\lnposslible. h b I sh h |
As a further complication, direct applications of packing ot only spheres, but even unusual shapes such as regular

densities often deal with non-spherical particles, or mixture®€ntagons anneal to their densest known packing in two di-
of shapes or sizes. In mixing dyes, the highest possible pef?ensions/19]. The arrangement for pentagons is a double
centage of colorant depends on the RCP density for the molattice, in which translates of a two-pentagon unit cover the
ecule’s shapg6]. In making ceramics, particles form clusters Plane. Computer simulations find an analogous double lattice
whose shape affects the final dendi}. Particle shape in- for heptagons as wellR0]. Thus these shapes too are imprac-
fluences packing densities in complicated ways. The idedical for studying random close-packed structures.
maximum packing density, as well as the RCP density, de- Here we study several shapes in two dimensions. A main
pends on shape and is unknown in most cases. Furthermorggal is to find shapes that remain disordered, which would
the density observed in a given experiment also depends dand themselves to studies of random arrangements. In addi-
how easily particles move past each other into optimal position, we may better understand the dependence of ordering
tions. Interparticle friction can be large when a shape has flgproperties on shape. Finally, packing in two dimensions is
sides, and multiple contacts can eliminate much of the parimportant in its own right in the behavior of films and mono-
ticles’ rotational freedom. Cubes, for example, have maxidayers.
mum packing density of 1 but reach a density of only 0.68 on All our shapes are clusters of spheres welded into trian-
deposition[8]. On the other hand, irregularly shaped par-gular lattice positions. This guarantees that the densest pack-
ticles are less dense than spheres on initial deposition burig is always a triangular lattice of the component spheres.
compress particularly well with vibratiof®]. The point contacts between clusters minimize friction and
Theoretical work has concentrated on packings of hardlocking effects as the shapes move past each other. Another
sphereg$4,5], with generalizations to hard ellipsoifts0—13 advantage is that comparison with computer experiments is
or mixtures of sphere sizg44,15. For ellipsoids, simula- possible, since overlaps are easy to check with spheres. Vi-
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FIG. 1. A schematic of the experiment. Moving the arm of the
sliding piece to one of the outlined sites changes the spring tension
at the moment of release and hence the hit magnitude.

sualizing the entire arrangement is also far easier in two di-

. . FIG. 2. The centers of the balls, as identified by the computer
mensions than in three.

from digital photographs of a trapezoid initial conditi¢top) and a

well-ordered arrangement of doublésottom).
Il. PROCEDURE

We welded togetheg-inch diameter carbon steel ball tion, and each time the balls settle from scratch. Further-
bearings with a Unitek 60 welder set at its maximum powermore, very strong hits can break the weld joints. On the other
60 W. During the welding the balls were held in a bakelitehand, a hit so light that the displacement of the balls is small
mount machined to give the desired final shape. The shape®mpared to the ball diameter makes rearrangement difficult
made were doubles, tripleghree balls in a straight line  and slow. In addition, for light hits at the smallest angles
triangles of three or six balls, diamonds of four balls, trap-shapes occasionally stop moving in positions that clearly
ezoids of five balls, and hexagons of seven balls. The weldshould be unstable, held in place only by friction. Thus we
ing appears not to distort the balls. One of the most stringenthight expect an optimum hit magnitude, not necessarily the
tests is that, as we shall see, several of the welded shapsame for different shapes. Using a range of parameters lets
order into perfect triangular lattices of their individual balls. us determine not only whether but also how easily different
A significant distortion from the welding would destroy the shapes order.
long-range order. A schematic of our shaking apparatus is When the shaking finishes, we photograph the final con-
shown in Fig. 1. Two pieces of plexiglas separated by 0.135figuration with an Olympus 340R digital camera and transfer
inch spacers confine balls to a single layer. The container ithe image to a computer. The computer scans the photograph
placed at an angle to the horizontal so that gravity pulls théor local bright spots, which appear near the center of each
balls towards one side. We typically fill a 9 ingld inch  ball. We refine the positions with a weighted average of the
region with ball clusters. Roughly 2500 single balls fit in this pixels surrounding the bright spots. Figure 2 shows the com-
space. After putting the shapes in, we shake the box roughlguter’s identification of an initial state and a well-ordered
to create a disordered initial state. An aluminum plate, confinal state. To locate the balls successfully by this method, a
nected to the plexiglas by a spring, serves as a hammesingle bright light source is used when taking the photo-
Rotating spokes pull back and release the aluminum plategraph. Multiple sources can lead to several bright spots on a
On release, it strikes the bottom of the container and shakesingle ball, or spots far from the ball center. A significant
the balls. A hit occurs once every three seconds for one housystematic error comes from warping of the photograph by
The balls stop moving completely between hits. The configuthe camera lens itself. To eliminate the warping, we generate
ration changes substantially during the first few shakes, and perfect triangular lattice of black dots on white paper and
negligibly at the end of the hour, but we have not investi-photograph it. We then find the displacement from ideal lat-
gated quantitatively the rate of ordering. tice sites of each photographed dot and interpolate to get the

We vary both the maximum spring extension and thedisplacement at other points in the picture. Figure 3 shows
angle of the container. These parameters change the relatitlee resulting vector field of displacements. We adjust the
strengths of three physical forces: the hit magnitude, theosition of each ball center in the photographs to compensate
component of gravity pulling the balls together, and the fric-for the warping. The maximum correction is comparable to
tion force between the balls and the plexiglas. Friction ancbne ball diameter.
effective gravity depend only on the angle, with friction de-  After each trial we sort the shapes and verify that less
creasing as the angle becomes steeper and gravity increasittigan 7% of the shapes broke. The amount of breakage cor-
We use 18 different settings involving three spring exten-elates strongly to both hit strength and shape. There is usu-
sions and seven angles between 20° and 50°. ally no breakage until midlevel hits and less than 3% on all

The hit magnitude depends on both spring length andut the hardest few settings. Shapes such as three-ball tri-
angle, since the weight of the striking plate itself changes thangles, with each ball welded to two neighbors, are strong.
equilibrium length of the spring by an angle-dependentTriples, with two balls held by a single weld, break much
amount. A very hard hit destroys the memory of the situaimore easily. Breakage seems to have little effect on the or-
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and the middle of the three spring settings. Singles, doubles,
and hexagons can form essentially perfect lattices, with a few
large domains oriented by the container walls. For triangles
and diamonds, small domains always appear in addition to
the large ones. Domain sizes for triples and trapezoids are
always substantially smaller than the container size, suggest-
ing an absence of long-range order. Usually the best ordering
occurs at an intermediate hit power. Trapezoids are an ex-
ception, with the degree of order nearly independent of hit
settings.

In all the arrangements of Fig. 4, the individual balls com-
posing the shapes form ordered domains with sharp bound-

FIG. 3. This vector field shows the displacements from truearies. The configurations have progressively decreasing do-
positions due to the photographs. The entire region is roughlymain sizes. As the domains shrink, interstitial clusters and
70x 30 ball diameters. regions that appear “random” increase in size and number.

Much of the configuration for trapezoids, the least ordered

dering. For all shapes, the run with the most breakage washape, has ordered regions no more than 6 alistwo
not the one with the best ordering. Even for triples, wheretrapezoidgacross. This small domain size suggests that trap-
broken shapes become singles and doubles, which both orderoids approach a regime of stable random arrangements.
easily, high breakage did not correlate to good order. A fewwe stress that our notion of “order” involves only the ar-
settings for triples and six-ball triangles, and one for doubles;angement of the individual spheres. Identifying which balls

were omitted because of large amounts of breakage. are welded together is difficult. We have done so for a few
cases and find no long-range orientational order beyond the
Il RESULTS requirement that the individual balls lie in a lattice. Thus we

are really studying the packing of disks in a plane subject to
As we vary the shaking parameters, all shapes excepmertain constraints.

trapezoids and triples form domains comparable in size to The shapes also differ in the voids that appear. Triples
the container itself, but they do so under increasingly restricgive rise to fewer holes than do the nonlinear shapes. Larger
tive hit conditions. Figure 4, which shows final configura- shapes support larger holes, sometimes with characteristic
tions for parameters away from optimum, reveals the subshapes. For example, hexagon packings regularly show hex-
stantial differences among shapes and illustrates many of ttegonal holes, and the largé-ball) triangles often have three
trends we find. The arrangements all come from a 40° anglballs missing in a triangular pattern. Hexagons frequently

FIG. 4. Final configurations
for different shapes for an angle of
40° and intermediate spring set-
ting. Left, top to bottom: singles,
doubles, hexagons, small tri-
angles. Right, top to bottom: large
triangles, diamonds, triples, trap-
ezoids.
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TABLE I. Highest and lowest density for different shapes. The numbers in parentheses show what the
densities would be if the holes were filled in.

Highest Lowest Initial

Doubles 0.908 0.908 0.905 0.876 0.870 0.865 0.825
(0.912 (0.91) (0.909 (0.88) (0.875 (0.873

Hexagons 0.887 0.886 0.878 0.833 0.832 0.801 0.784
(0.895 (0.899 (0.89) (0.86) (0.850 (0.829

Small triangles 0.881 0.879 0.877 0.848 0.845 0.844 0.820
(0.892 (0.889 (0.887 (0.86) (0.855 (0.853

Large triangles 0.863 0.861 0.854 0.830 0.829 0.827 0.813
(0.883 (0.880 (0.872 (0.842 (0.839 (0.837

Diamonds 0.853 0.852 0.851 0.820 0.814 0.808 0.793
(0.880 (0.870 (0.869 (0.832 (0.822 (0.8149

Triples 0.862 0.861 0.859 0.835 0.816 0.813 0.792
(0.879 (0.873 (0.870 (0.84) (0.823 (0.819

Trapezoids 0.839 0.836 0.832 0.812 0.809 0.808 0.788

(0.864 (0.853 (0.852 (0.826 (0.829 (0.819

have rows of holes, as on the far left of Fig. 4, as well asdisk motion from sliding causes hexagonal crystals to form
substantial void regions at crystallite boundaries. at a density of about 0.82. Another techniddé] shakes a
fixed-density system to find the most probable configura-
tions. Repeating with a series of densities shows a change in
behavior near 0.75, with large lattice regions forming above
We quantify the degree of order in several ways. Densitythis density. Computer simulations of a liquid-solid interface
shown in Table I, measures the state of the entire system. Weave put a hard-sphere liquid near a two-dimensional lattice
use a large rectangle and calculate the total ball area insidef attractive sites and find a possible first-order transition due
contributed both by balls completely inside and by balls onto packing effects at a density 0.728]. The restriction to
the boundary. Our biggest source of error in the density callattice sites naturally reduces the transition density.
culation comes from the lengths of the rectangle’s sides in Interestingly, our lowest densities, found for trapezoids,
units of ball diameters. are very close to the transition density, and qualitatively
The densities confirm the qualitative discussion on thghere appear to be only small domains in these packings. The
relative ordering of the different shapes in Fig. 4. Of the twoagreement of the trapezoid density with the previously ob-
main defects in our arrangements—holes and grairserved hard-disk transition density supports the idea of using
boundaries—holes have a much larger effect on density, pafinal trapezoid arrangements as models of two-dimensional
ticularly for the largest shapes. Revised densities, treatinfRCP configurations. Although the exact configurations at-
holes in an otherwise crystalline region as filled, are showrained by trapezoids would be unstable as arrangements of
in parentheses in Table I. Small triangles pack slightly betteunwelded single balls, the maximum random density should
than large triangles, although the difference decreases whdre similar for the two cases. The perfect alignment of the
holes are counted as filled. The similar behavior of the twddalls within each trapezoid increases the maximum random
sizes of triangles, particularly after discounting holes, showslensity, but the larger holes in trapezoid packings decrease
that the ordering behavior is not completely dominated bythe density.
size-dependent effects such as the container size or hit The comparison with the less well-ordered configurations
power. also illustrates how easily different shapes order. Even with
The density of a perfect triangular lattice, and the maxi-very light taps, doubles order reasonably well, for instance.
mum possible density for all of our shapes, is 0.908%hat  Not surprisingly, the degree of order under light taps has
the densest packings for doubles in Table I apparently exstrong correlation to the size of the shapes used.
ceed this value is merely a consequence of the uncertainty in To identify a length scale for the domains in each arrange-
the density calculation. There may be a systematic error ofnent, we calculate a two-ball correlation function. We con-
less than 0.5% toward larger density, perhaps because tiseder the distance between each pair of balls and construct a
container height is slightly larger than the ball diameter anchistogram of these distances, with about 320 bins per ball
the balls may not lie perfectly flatFor packing of spheres in diameter. This is equivalent to finding the number of ball
two dimensions, a transition from random to ordered struccenters in annuli of fixed width centered at a single ball. For
tures occurs near 0.80. In one experiment a gradual, uniforra perfect lattice, the result is sharp peaks at spacings charac-
contraction of a rubber sheet increases the density of diskeristic of the triangular lattice: 43,2, etc., diameters. Im-
lying on the sheefl7]. After the disks come into contact, perfections, both in the identification of the ball centers and
they slide across the sheet under further contraction. Thi the lattice itself, broaden the peaks and raise the heights of

IV. LARGE-SCALE ORDER
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300 one quarter of the time. L&t be the angle between the line
connecting the points and the rectangle’s short sidesla

<b, the first ball can lie anywhere inside the shaded rect-
angle, of sides.—r cos# andb—r sin 6. Integrating overm,
150 the volume corresponding to separatioto r +dr is
2
rdrf do4(a—r cosh)(b—r sinp)
0
0

E
TE;
E mm —[27ab—4(a+b)r +2r2]rdr. 1
g
2 u ““ For asr=<bh, the same integral applies, except that not all
S 150 " "mmu angles are allowed. The result is
|
/2
4rdrf dé(a—r cosf)(b—r sing)
0 . ! cos La/r

0 40 60 80
Ball spacing (diameters)

a
=|2mab—4ab cos*r —2a?

FIG. 5. Pair correlation functions corresponding to the two-ball
configurations of Fig. 2. The white lines are average values calcu- >
lated from Eqs(1)—(3), as described in the text. The insets expand —A4b(r—yre-a’)
the regions from zero to eight ball diameters.

rdr. (2)

Finally, forasb<r=/a?+b?, there is an additional re-
the intervening values. Figure 5 shows the histograms correstriction on the allowed, giving

sponding to the lattices of Fig. 2.
Geometrical considerations determine the average shape i~ Lp/r
4rdrf dé(a—r cosh)(b—r sing)
C

os ~alr

of the histogram. The linear increase in average amplitude o
with distance at small separations corresponds to the increase
in the circumference of a circle with its diameter. The aver-
age amplitude in the histogram falls off at larger distances
because of the finite size of our sample. We calculate the
exact distribution of separations for two balls randomly po-
sitioned in a rectangle,pas follows. yP +4byr?—a’*-2(a®+b?+r?)
Let a andb be the lengths of the rectangle’s sides, with
a<Db. The region of phase space corresponding to choosing
two points at random in the rectangle has voluna)g.
Now calculate the volume of the subset with point separatio
betweenr andr +dr. With the rectangle oriented as in Fig.
6, the first point lies below and to the left of the second point

b a
=|4ab sinle—cosfl— +4a\r2—a?

rdr. 3)

These formulas, divided byap)?, give the probability
Ijihat two points are separated by a distance betwesamdr
+dr. For a region containingy balls, the average value of
he pair correlation function is this function times the number
of pairs, G‘) The white lines of Fig. 5 are the average values
calculated in this way.
The two parts of Fig. 5 differ most obviously in the extent
of the structure. In the upper graph, peaks give way to noise

near 4 ball diameters, whereas the lower graph retains struc-
—1 0

a

ture to 40 diameters. To measure the long-range correlations,
we begin by taking the difference between the observed his-
togram and its calculated average value. We average the 50
highest values within a window 2 ball diameters wide, and
also the 50 lowest values. Then we take the difference be-
tween the two. As the window moves to larger distances, this
difference generally decreases. It approaches 50 for the larg-
est distances, with extremely disordered lattices reaching this
a —rcosf value within a few ball diameters. To assign a length scale to
a configuration, we set a cutoff of 80. The best lattices drop
FIG. 6. Geometry of the average histogram calculation debelow 80 near 30 ball diameters, which is comparable to the
scribed in the text. If two points in the larger rectangle have theSystem size in one direction. Even primarily crystalline ar-
angle and separation shown, the lower left point always lies withirangements often have two or three domains, aligned with
the shaded region. the different walls of the container, and the length scale we

b—rsind
o~

061303-5



I. C. RANKENBURG AND R. J. ZIEVE PHYSICAL REVIEW E63 061303

TABLE I1l. Extent of order, in ball diameters. The length scale of the most ordered arrangements is
limited by the sample size.

Most ordered Least ordered Initial
Doubles 30.2 27.7 27.0 14.3 13.0 10.2 3.0
Hexagons 28.0 255 25.1 7.8 7.6 7.5 3.3
Small triangles 25.3 22.1 20.4 8.1 8.0 7.7 2.7
Large triangles 20.6 145 13.8 7.9 6.8 6.8 2.7
Diamonds 13.6 13.1 11.7 4.6 4.6 3.7 3.0
Triples 12.2 10.2 8.1 4.5 3.0 2.0 2.0
Trapezoids 6.0 6.0 5.6 4.3 3.7 3.6 25

find depends on the relative sizes of these domains. Thiength of the boundary. With more than two domains this
length scales for several different configurations are showtinear relationship fails, but the high sensitivity of the peak-
in Table II. to-valley ratio to boundaries remains.

Voids, interstitials, and other imperfections generally
have much less effect than boundaries. One exception is that
in nearly perfect lattices, the first few valleys drop so close to

To further characterize the appearance of holes and graigero that any disorder changes their relative levels substan-
boundaries in the different shapes, we analyze short-rangélly; this causes the wide variation in the numbers shown
order using methods sensitive to each type of imperfectionfor doubles. A second exception is that occasionally, particu-
Domain boundaries strongly influence the short-distance rdarly with doubles, a square lattice forms in a small area.
gion of the two-ball correlation function, while coordination This produces a peak on the histogram& diameters,
numbers are more sensitive to voids. which is close to the center of the first valley and can have a

We use the correlation function out to 3 ball diameters.particularly large effect.

We add the heights of the first five peaks, and divide by the Doubles and hexagons show the best ordering, as they do
sum of the first and third valley heights. We omit the secondoy the long-range measures. Once again, the two sizes of
and fourth valleys because they lie between closely spacddiangles are very similar in both the best and worst order
peaks and give less consistent results. This quotiznis  displayed. One of the clearest indications of the sensitivity of
larger for better ordered configurations. For perfect order, nehis index to grain boundaries is the noticeable difference
balls lie in the valleys and the ratio is infinite. For the mostbetween diamonds and triples. The two shapes have compa-
disordered system we can engineer, the value is about 2@able densities once voids are filled in, and have visually
Using a ratio means that the exact number of balls used fasimilar amounts of ordering. However the triples definitely
each shape is unimportant. have more grain boundaries, with fewer interstitials, which is

Values for best, worst, and initial arrangements appear imeflected here.

Table Ill. This probe is very sensitive to grain boundaries. Properly normalizing for the order inherent in the differ-
The two most ordered runs of doubles have a single crystant shapes is a difficult problem. Resolving the effect of
spanning the entire container. The third run has two regiongternal correlations among the balls composing a shape is
with a grain boundary between them, which greatly reducegarticularly difficult with this measurement. The initial or-
the peak-to-valley ratio. The best hexagon run has one largéering corresponds well to cluster size, suggesting that the
domain and a small second domain, while the other runinternal correlations are important here. However, this corre-
have several small domains in addition to the large one. Ifation disappears after shaking, even for the least effective hit
fact, as shown in Fig. 7, for systems with a single domainparameters. We emphasize the similarities between the two
boundary the peak-to-valley ratio is proportional to thetriangle shapes as evidence that this factor is unimportant in

V. LOCAL ORDER

TABLE Ill. D, a weighted ratio of the first few peak and valley amplitudes in the two-ball correlation
function. See text.

Highest Lowest Initial

Doubles 1480 1451 642.6 78.7 76.2 64.2 16.0
Hexagons 410.8 216.8 191.0 54.2 42.3 33.6 26.7
Small triangles 109.2 105.3 104.7 43.1 42.9 40.8 20.5
Large triangles 91.8 88.6 82.4 44.2 38.9 35.0 25.3
Diamonds 71.0 68.7 61.8 26.5 23.9 20.3 18.6
Triples 57.6 50.5 44.4 23.6 17.9 16.2 14.1

Trapezoids 43.1 35.6 32.9 24.7 24.5 215 20.1
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trend of higher order for larger clusters. The differences
among the final configurations also exceed correlation ef-
fects. For example, each hexagon has a center ball with six
nearest neighbors, and centers account for 14.3% of all balls.
For the three most ordered hexagon configurations, on aver-
age 94.5% of the balls have six nearest neighbors, so 5.5%
do not. Since all the center balls do, 6.4% of the noncenters
must have imperfect Voronoi regions, a change of less than
1%. The difference between hexagons and triangles is sev-
eral times this large, so the perfect arrangement around the
center balls cannot explain the entire difference. The more
0 ‘ . ‘ complicated effects involve the outer balls. For a hexagon,
0 20 40 60 each of the six outer balls has three nearest neighbors per-

Grain Boundary Length (ball diameters) fectly positioned. A large triangle has three balls with four

nearest neighbors, and three others with two. Without deter-

FIG. 7. D, a ratio of correlation function values described in the mining precisely the implications for the Voronoi region’s

text, as a function of boundary length, for lattices perfect except foshape, we posit that the effect should be much smaller than

1500

1000

500

a single grain boundary. The line is a least-squares fit. that of the central ball of the hexagon, and that we can rea-
sonably ignore it in distinguishing among shapes. Also note
the results from the final configurations. that the hexagons form a very poorly ordered initial state,

As a complementary local order indicator, we calculatedespite the automatically proper coordination number of the
the Voronoi region of each ball. The Voronoi region of a ball center balls.
consists of the points closer to that ball than to any other. The percentage of hexagonal Voronoi regions is particu-
The edges of the region are perpendicular bisectors of thiarly sensitive to holes. A single missing ball in a perfect
lines connecting the ball to its neighbors, so for a perfectattice creates six pentagonal Voronoi regions, with larger
triangular lattice every Voronoi region would be a regularholes disturbing more Voronoi regions. Slight lattice imper-
hexagon. Pentagonal or heptagonal regions signify defects iiections, such as those introduced by the ball center identifi-
the lattice. To measure order, we find the percentage of ballsation, usually reduce the number of nonhexagonal Voronoi
with six-sided Voronoi regions. This tells us how many ballsregions around a single void to four. Grain boundaries have
are in the interior of some domain. less effect, with typically one imperfect Voronoi region per

The highest percentage of hexagonal Voronoi regiondall of boundary length. Interstitials have little effect beyond
ranges from over 98% for doubles to 78% for trapezoidsthe balls that compose them, since the balls at the surface of
The highest, lowest, and initial percentages for each shape grain already have irregular VVoronoi regions.
appear in Table IV. These three numbers differ by at most The coordination number, the number of balls touching a
3.5% for a single shape, and usually by less than 1%. Fogiven ball, is an indicator related but not identical to the
comparison, the values for a typical initial configuration andVoronoi region shape. No coordination number can exceed
for the most disordered final arrangements are also showssix, although a Voronoi region can have more than six sides.
Doubles order the most easily. Hexagons achieve the neXx@oordination numbers are also far more sensitive than
highest order, although at the poorest hit settings they remaivoronoi regions to small displacements of balls, for ex-
more disordered than triangles. Of the remaining shapeample, from noise in identifying the ball centers. In Fig. 8 we
triples, and diamonds have six nearest neighbors with abowhow the distribution of coordination numbers for the con-
the same frequency. Trapezoids have significantly more irfigurations of Fig. 4. For random sphere arrangements in
regular Voronoi regions. three dimensions, the coordination number distribution var-

We next address the issue of correlations within the largeies more than other properti¢3], including the pair corre-
shapes. The initial configurations given in Table IV show nolation function. Balls are taken as touching when their

TABLE IV. Percentages of balls with hexagonal Voronoi regions, for several shapes. The highest and
lowest percentages among final packings, as well as the initial percentage, are shown.

Highest Lowest Initial
Doubles 98.7 98.2 97.6 88.2 87.1 86.8 74.4
Hexagons 96.2 94.1 93.3 80.8 80.5 73.3 70.8
Small triangles 89.9 89.5 88.6 82.1 82.0 82.0 73.1
Large triangles 88.0 87.8 87.6 83.3 83.1 80.6 78.4
Diamonds 87.3 85.3 83.8 73.9 73.0 71.3 69.0
Triples 86.2 85.7 85.7 77.8 72.8 71.3 67.3
Trapezoids 78.1 78.1 77.6 71.7 71.5 70.8 67.4
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2 4 6 2 4 6 2 4 6 FIG. 9. A comparison of the average of the highest valDes
(right) and the number of symmetrid¢eft) for each shape. For
50 ) 50 50 ooy doublesD is actually actually 1191, far off the scale of this graph.

crystalline region, only lattice sites satisfy this criterion. By
contrast, triples do have a stable off-lattice location, as illus-
trated in Fig. 10. Trapezoids and large triangles also have
0 2 4 6 " 4 6 2 4 6 stable nonlattice positions for a single particle added to an
existing lattice, but our other shapes do not. This may ac-
FIG. 8. Percentage of balls with a given coordination number,count for the Significanﬂy |Onger |ength scale of small tri-
for the configurations of Fig. 4. angles compared to large ones. For diamonds, also illustrated
in Fig. 10, clusters positioned incompatibly may lead to
computer-identified centers lie within 1.08 ball diameters.voids, explaining the large number of voids in diamofstse
We choose this as a cutoff because at longer distances si§able |). Finally, doubles can generally join an ordered re-
nificant asymmetry appears in the first peak of the two-balgion in any of three distinct orientations, allowing them to

correlation function. order easily despite their lack of much rotational symmetry.
Earlier two-dimensional experiments found a sharp
change in average coordination number near the random- VIl. CONCLUSIONS AND EURTHER WORK

ordered transitiof17]. Although our coordination numbers
are larger due to correlations introduced by the welds, they We have studied how several shapes composed of welded
decrease abruptly near the same density. The similar behaspheres pack in two dimensions. Our goals were to under-
ior gives further encouragement to the possibility of studyingstand how particle shape affects packings, and especially to
random arrangements in two dimensions. identify two-dimensional random close-packed configura-
tions. Constructing shapes as sphere clusters avoids issues of
maximum density and interparticle friction changing with
shape, and permits detailed comparison of the configurations
We find that rotational symmetry is an excellent guide forreached by different shapes. One consequence is that we find
predicting the degree of order that a shape supports. Figure® strong correlation between the rotational symmetry of a
shows both the average of the three highest peak-to-vallegarticle and its short-range order. In addition, the defects in
ratiosD (Table 1) for each shape, and also the order of thelong-range order relate to geometry. Shapes where at least
rotational axis. Except for doubles, the correspondence isne side is 3 balls long produce more grain boundaries, while
excellent. The various other measures of order would giveroids are common with large nonlinear shapes.
similar results. The correspondence between ability to order In keeping with the tendency of shapes to order in two
and rotational symmetry suggests that domains grow aroundimensions, most of our clusters can anneal into configura-
the edges. To join the ordered portion, a shape must have thi@ns with long-range order of the individual spheres. Even
correct orientation. Its rotational symmetry sets a limit on the

maximum angle through which it needs to rotate to reach this
orientation. On the other hand, the rotational symmetry has
little correlation to the degree of order in the initial configu-
rations, which do not depend on growth at domain edges.
Several features of the final packings make sense when
considering domain growth. For some shapes, any stable po-

sition near a growing crystal is part of the lattice. For ex-
ample, stability for doubles under gravity requires at least FIG. 10. Possible lattice growth with triplékeft) and diamonds
three contacts, not all on the same ball. At the edge of aright).

VI. ROTATIONAL SYMMETRY

061303-8



INFLUENCE OF SHAPE ON ORDERING OF GRANULR. .. PHYSICAL REVIEW E 63 061303

under conditions where no long-range order appears, theur larger shapes. More significantly, only the constituent
shapes form small domains with sharp boundaries, qualitespheres form ordered structuremt the larger shapes. For
tively different from the random configurations that appearexample, two-dimensional simulations of prolate ellipses un-
in three dimensions. Trapezoids are the one exception. Alller the influence of gravity find orientational but not trans-
their packings remain random or nearly so, with typical do-|ational long-range ordd21]. By contrast, our doubles have
main sizes of only two trapezoids. Interestingly, the onset ofyg |ong-range orientational order. Instead, the dimples in the
ordered domains occurs near the packing density 0.8, whekhapes' sides allow neighboring doubles to interlock and
previous experiments on disks already showed evidence for ercome the effect of gravity. A further project would de-
transition between random and ordered states. form doubles gradually into ellipsoids by filling in the
Finding shapes such as trapezoids with stable random agimples, while tracking changes in the characteristic arrange-
rangements in two dimensions allows comparison to thenents. Once again, this project is most practical through
packing behavior of spheres in three dimensions. We plan tgjmuylations.
pursue the similarities further by studying the time depen- \ve are continuing work along other lines as well. Time
dence of trapezoid configurations during annealing. The datgependence measurements for shapes that do crystallize may
on rotational symmetry suggest that examining elongatefhe|p in understanding how nonspherical particles move into
shapes with little symmetry may identify other shapes that dgyosition. Finally, we plan to extend the measurements to-

not crystallize. However, because of difficulties with break-wards three dimensions by varying the container thickness to
age and with system size, this work is better done throughccommodate more layers of balls.

computer simulations. The data presented here provide a se-
ries of test cases on the realism of any simulations.

Although our artificial particles are convenient for com-
parisons among the shapes, the unusual surface geometry
clearly changes some behavior from that of similar but con- We thank J. D. Lawton for help in setting up the appara-
vex shapes. The irregular surfaces allow neighboring partus. This work is supported by the National Science Founda-
ticles to lock together, leading to the high void densities fortion under Grant No. DMR-9733898.
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